Section 1: Healinium Basics (Q1–Q20)
1. What is Healinium?
An AI-powered locator healing tool for Selenium/WebDriver that automatically fixes broken locators.
2. Why use Healinium?
To prevent test failures when the UI changes.
3. Main goal of Healinium?
Increase automation test script stability.
4. Which frameworks can Healinium be used with?
Selenium, Appium, and WebDriver-based frameworks.
5. How does Healinium fix locators?
Uses AI algorithms and element attribute comparisons.
6. Which languages does Healinium support?
Java, C#, Python (any language supported by Selenium).
7. Relation between Healinium and Selenium?
Healinium acts as an extension to Selenium.
8. Does Healinium run standalone?
No, it integrates into a Selenium framework.
9. What types of locators can Healinium handle?
XPath, CSS, ID, Name, Class Name, Link Text, etc.
10. What is locator healing?
Process of automatically applying a new locator when the old one fails.
11. Architecture of Healinium?
Test Script → Healium Wrapper → AI Healing Engine → Selenium Driver.
12. Why is Healinium considered intelligent?
It analyzes element attributes to find the best possible match.
13. Learning process of Healinium?
Stores and learns from previous locator and attribute history.
14. Can Healinium handle dynamic elements?
Yes, even when attributes change.
15. Accuracy of Healinium results?
Typically 90%+ when attributes are available.
16. Which browsers does Healinium work with?
All Selenium-supported browsers (Chrome, Firefox, Edge, etc.).
17. Does Healinium work for mobile automation?
Yes, via Appium integration.
18. Is manual locator update needed with Healinium?
Usually no, but may be required in critical cases.
19. Does Healinium reduce test execution speed?
Slightly, due to the healing process.
20. What is Healinium’s license type?
Depends on version — could be free or paid.

Section 2: Healinium Setup & Integration (Q21–Q40)
21. How to install Healinium?
Add Maven/Gradle dependency.
22. How to add Healinium dependency in Maven?
Add Healinium coordinates in pom.xml.
23. How to add Healinium in Gradle?
Add dependency in build.gradle.
24. What is the Healinium wrapper driver?
HealiumDriver — a replacement for Selenium WebDriver with healing support.
25. How to initialize HealiumDriver?
WebDriver driver = new HealiumDriver(new ChromeDriver());
26. What is Healinium config file?
File that defines healing behavior and storage.
27. Healing storage options?
Local file, database, cloud.
28. What is Healinium Local Mode?
Stores healing data locally.
29. What is Healinium Remote Mode?
Stores healing data on a central server/cloud.
30. Where are Healinium logs displayed?
Console and log files.
31. Does Healinium support XML configuration?
Yes, supports properties or XML.
32. Default storage format for Healinium?
JSON or properties-based.
33. Does Healinium driver support implicit waits?
Yes.
34. Does Healinium work with explicit waits?
Yes, integrates with wait conditions.
35. Does Healinium work with Page Object Model (POM)?
Yes, locators in POM are healed too.
36. Does Healinium handle Shadow DOM?
Limited support, similar to Selenium.
37. Can Healinium be integrated with CI tools?
Yes, works with Jenkins and other CI pipelines.
38. How to check Healinium version compatibility?
Check official docs or Maven Central.
39. What is a backup locator in Healinium?
Locator used if the primary one fails.
40. How to set Healinium timeout?
Through config file or driver initialization.

Section 3: Healinium Features & Benefits (Q41–Q60)
41. Main benefit of auto-healing locators?
Reduces test instability and maintenance costs.
42. Can Healinium heal both CSS and XPath?
Yes.
43. Does Healinium support multiple locator strategies?
Yes, with primary and fallback.
44. How does Healinium match attributes?
Calculates similarity score.
45. What is similarity score?
Percentage match between old and new element attributes.
46. What is minimum similarity threshold?
Minimum percentage to accept a match.
47. Can threshold be changed in Healinium?
Yes, via config.
48. Does Healinium keep locator history?
Yes, for accurate future healing.
49. Does Healinium generate reports?
Yes, with healed locators summary.
50. What does Healinium report show?
Broken locator, healed locator, match score.
51. Does Healinium prevent test failures?
In most cases, yes.
52. Can Healinium handle page load delays?
Yes, using waits.
53. Does Healinium support multi-language scripts?
Only languages supported by Selenium.
54. Can Healinium handle element index changes?
Yes, by using other attributes.
55. Difference between Healinium and smart XPath?
Healinium heals at runtime, smart XPath optimizes at design time.
56. Does Healinium have self-learning?
Yes, improves accuracy with repeated healing.
57. Can you manually override Healinium healing?
Yes, in config or code.
58. Can Healinium handle dynamic IDs?
Yes, by comparing other attributes.
59. Limitations of Healinium?
May fail if element is completely new.
60. Effect of Healinium on regression tests?
Reduces false failures.

Section 4: Healinium Best Practices & Troubleshooting (Q61–Q80)
61. What to check first when starting Healinium?
Storage location and threshold.
62. Optimal Healinium threshold?
0.7–0.8 (70–80%).
63. How to integrate Healinium with CI/CD?
Add dependency in Maven build and Jenkins pipeline.
64. Why store locators in POM when using Healinium?
For better maintainability.
65. Why is dynamic wait important in Healinium?
To handle slow-loading pages.
66. When to use cloud storage in Healinium?
For sharing healing data across teams.
67. How does Healinium store in database?
Using JDBC connection config.
68. What is Healinium debug mode?
Shows detailed healing decision logs.
69. What to do if test fails in Healinium?
Check logs and update locator manually if needed.
70. When can performance issues occur in Healinium?
With large DOM and high healing threshold.
71. What is ElementMatchException?
No matching element found.
72. How to fix locator mismatch problems?
Clear locator history.
73. When is backup locator used?
If primary locator’s score is too low.
74. Does Healinium help with dynamic tables?
Yes, even if column/index changes.
75. Can healing be disabled in Healinium?
Yes, in config.
76. Can attribute weights be adjusted in Healinium?
Yes, by changing attribute priority in config.
77. What is element cache in Healinium?
Stores recently healed elements.
78. How to enable continuous learning in Healinium?
Use central storage.
79. What is manual approval process in Healinium?
Approve healing results before saving.
80. How to show Healinium execution reports in CI?
Publish report path in Jenkins.

Section 5: Healinium Advanced Usage (Q81–Q100)
81. Does Healinium support parallel execution?
Yes, with thread-safe config.
82. Does Healinium sync locators across browsers in multi-browser tests?
Yes, if central storage is used.
83. Can Healinium heal mobile app locators?
Yes, via Appium.
84. Does Healinium support language switching?
Locators are language-independent.
85. Can Healinium be used in API testing?
No, UI automation only.
86. Does Healinium have full Shadow DOM support?
Partial only.
87. Can Healinium heal iframe elements?
Yes, after switching frames.
88. Can page load strategy be set in Healinium?
Yes, via Selenium settings.
89. Can Healinium handle non-HTML apps?
No, HTML-based UI only.
90. Can Healinium heal SVG elements?
Yes, by matching attributes.
91. What to check during version upgrade in Healinium?
Config compatibility.
92. Can custom matchers be added in Healinium?
Yes, by extending API.
93. Does Healinium support headless mode?
Yes, same as Selenium.
94. Does Healinium support remote execution?
Yes, compatible with Selenium Grid.
95. What is cloud locator service in Healinium?
Centralized locator storage service.
96. Does Healinium allow user-defined locator strategy?
Yes.
97. Does Healinium affect test data?
No, works only at locator layer.
98. Can healing results be exported from Healinium?
Yes, to JSON/CSV.
99. How to restore backups in Healinium?
Restore storage file or DB.
100. Overall goal of Healinium?
Reduce locator maintenance and improve automation reliability.

