Section 1: API Fundamentals — 50 Steps
Beginner Level (1–20)
Step 1: What is an API?
An API (Application Programming Interface) is a set of rules that lets software applications communicate.
Step 2: Why do we need APIs?
They connect different systems so they can share data and services.
Step 3: Real-life analogy for API
Like a waiter who takes your order (request) to the kitchen and brings food (response).
Step 4: Main components of an API
· Endpoint (URL)
· Request
· Response
Step 5: Types of APIs
1. Open — Public access
2. Internal — Inside organization
3. Partner — Shared with partners
4. Composite — Multiple calls in one
Step 6: What is an API endpoint?
A unique address where an API resource is accessed.
Step 7: What is an API request?
A message asking the API to perform an action or return data.
Step 8: What is an API response?
The reply from the API, containing data or status info.
Step 9: Common data formats in APIs
· JSON (most popular)
· XML
· YAML
Step 10: What is a query parameter?
Extra data in a URL to filter results (e.g., ?status=active).
Step 11: What is a path parameter?
A variable in the URL path (e.g., /users/{id}).
Step 12: What is a payload?
The request body sent to the server, often in POST or PUT.
Step 13: What are request headers?
Metadata about the request (e.g., authentication, content type).
Step 14: What are response headers?
Metadata about the server’s response (e.g., date, cache rules).
Step 15: What is an API key?
A unique code that authenticates the request.
Step 16: What is an SDK?
A toolkit that helps developers work with an API.
Step 17: What is an API call?
A single request made to an API endpoint.
Step 18: What is an API integration?
Connecting two or more systems via APIs.
Step 19: What is API documentation?
Instructions explaining how to use the API.
Step 20: What is a REST API?
An API following REST architecture, using HTTP methods.

Intermediate Level (21–35)
Step 21: What is an RPC API?
Remote Procedure Call API — runs functions remotely.
Step 22: What is a SOAP API?
An XML-based API using the SOAP protocol.
Step 23: What is synchronous communication?
Client waits for the server to respond before continuing.
Step 24: What is asynchronous communication?
Client sends request and moves on without waiting.
Step 25: What is API latency?
Time taken to get a response from an API.
Step 26: What is API throughput?
Number of requests an API can handle per second.
Step 27: What is API uptime?
The percentage of time the API is available.
Step 28: What is API caching?
Saving responses to speed up future requests.
Step 29: What is pagination in APIs?
Breaking large datasets into smaller pages.
Step 30: What is filtering in APIs?
Restricting results to match conditions.
Step 31: What is sorting in APIs?
Ordering results by a field.
Step 32: What is content negotiation?
Deciding data format (JSON/XML) based on request.
Step 33: What is HATEOAS?
REST concept of embedding next possible actions as links in a response.
Step 34: What is rate limiting?
Restricting how many requests a user can make in a time frame.
Step 35: What is throttling?
Slowing down requests to avoid overload.

Advanced Level (36–50)
Step 36: What is API versioning?
Running multiple versions (e.g., /v1 and /v2).
Step 37: Why version APIs?
To upgrade without breaking old clients.
Step 38: What is API security?
Protecting APIs using authentication, authorization, and encryption.
Step 39: What is OAuth?
A secure protocol for delegated access.
Step 40: What is JWT?
JSON Web Token — secure token for authentication.
Step 41: What is mutual TLS?
Two-way certificate verification for secure API access.
Step 42: What is API monitoring?
Tracking API performance and errors.
Step 43: What is API logging?
Recording request and response details.
Step 44: What is an API gateway?
A system managing API traffic, security, and routing.
Step 45: What is service discovery?
Finding APIs dynamically within a network.
Step 46: What is API mocking?
Simulating API responses for testing.
Step 47: What is API deprecation?
Phasing out old API versions.
Step 48: What is an API sandbox?
A safe testing environment for APIs.
Step 49: What is API orchestration?
Combining multiple API calls into one process.
Step 50: Best practices for API design
· Clear documentation
· Consistent naming
· Secure authentication
· Handle errors well

Section 2: REST API — 50 Steps
Beginner Level (1–20)
Step 1: What is a REST API?
A REST (Representational State Transfer) API is a web service that uses HTTP methods to access and manipulate resources.
Step 2: What are REST resources?
Any object or data entity that can be accessed via a URL, like /users or /products.
Step 3: Key principles of REST
· Client-Server Separation
· Stateless Communication
· Uniform Interface
· Cacheable Responses
· Layered System
Step 4: What is a REST endpoint?
A unique URL that represents a specific resource.
Step 5: What is the GET method?
Retrieves data without changing it.
Step 6: What is the POST method?
Creates a new resource on the server.
Step 7: What is the PUT method?
Updates or replaces a resource completely.
Step 8: What is the PATCH method?
Partially updates a resource.
Step 9: What is the DELETE method?
Removes a resource from the server.
Step 10: What is HTTP status code 200?
OK – the request was successful.
Step 11: What is HTTP status code 201?
Created – a new resource was successfully added.
Step 12: What is HTTP status code 400?
Bad Request – the request is invalid.
Step 13: What is HTTP status code 401?
Unauthorized – authentication is required.
Step 14: What is HTTP status code 404?
Not Found – the resource does not exist.
Step 15: What is HTTP status code 500?
Internal Server Error – something went wrong on the server.
Step 16: What is a REST request header?
Metadata like authentication info, content type, and accepted formats.
Step 17: What is a REST response header?
Information about the server’s response, such as content length or cache rules.
Step 18: What is a REST request body?
The data sent to the server (usually with POST, PUT, or PATCH).
Step 19: What is content negotiation?
Choosing the format of the response (JSON, XML, etc.) based on request headers.
Step 20: Why use JSON in REST?
It’s lightweight, easy to read, and works well with JavaScript.

Intermediate Level (21–35)
Step 21: What is statelessness in REST?
The server does not store client session data between requests.
Step 22: What is caching in REST APIs?
Storing responses temporarily to improve performance.
Step 23: What is pagination in REST APIs?
Breaking large data sets into smaller pages with parameters like ?page=1&limit=50.
Step 24: What is filtering in REST APIs?
Restricting results by adding parameters like ?status=active.
Step 25: What is sorting in REST APIs?
Ordering results by a specific field, e.g., ?sort=created_at.
Step 26: What is HATEOAS?
Hypermedia links in responses to guide clients on next actions.
Step 27: What are RESTful best practices?
Use nouns, proper HTTP methods, and consistent URL structure.
Step 28: What is an idempotent operation in REST?
An operation that has the same effect no matter how many times it’s called (e.g., GET, DELETE).
Step 29: What is a safe method in REST?
An HTTP method that does not alter server data (e.g., GET, HEAD).
Step 30: What is OPTIONS in REST?
A method used to describe the communication options for a resource.
Step 31: What is HEAD in REST?
Similar to GET but returns only headers, not the body.
Step 32: What is TRACE in REST?
Returns the received request for debugging purposes.
Step 33: What is PATCH vs PUT?
· PUT replaces the entire resource.
· PATCH updates only parts of the resource.
Step 34: Why should REST APIs use SSL/TLS?
To secure data transfer using HTTPS.
Step 35: What is URI vs URL in REST?
· URI: Identifier for a resource.
· URL: URI with location details for accessing it.

Advanced Level (36–50)
Step 36: What is REST API versioning?
Supporting multiple API versions, e.g., /v1/users, /v2/users.
Step 37: Why is API versioning important?
It prevents breaking older clients when making changes.
Step 38: What is API rate limiting in REST?
Restricting request frequency to avoid overloading the API.
Step 39: What is API throttling in REST?
Slowing requests intentionally to manage traffic.
Step 40: What is API authentication in REST?
Verifying the client’s identity using API keys, OAuth, or JWT.
Step 41: What is REST API authorization?
Determining which resources the client can access.
Step 42: What is token-based authentication in REST?
Using tokens instead of usernames/passwords for access.
Step 43: What is OAuth 2.0 in REST?
A protocol that allows secure delegated access to APIs.
Step 44: What is JWT in REST APIs?
A compact, secure token format for authentication.
Step 45: What is REST API logging?
Recording requests, responses, and errors for analysis.
Step 46: What is REST API monitoring?
Tracking uptime, response time, and error rates.
Step 47: What is REST API mocking?
Simulating endpoints for testing without hitting live servers.
Step 48: What is REST API orchestration?
Combining multiple API calls into a single aggregated response.
Step 49: What is REST API gateway?
A central system to manage requests, routing, and security.
Step 50: Best practices for REST APIs
· Use proper HTTP methods.
· Keep endpoints consistent.
· Return meaningful error messages.
· Secure with HTTPS.

Section 3: SOAP Web Services — 50 Steps
Beginner Level (1–20)
Step 1: What is SOAP?
SOAP (Simple Object Access Protocol) is a protocol for exchanging structured data between systems using XML.
Step 2: Why use SOAP?
It ensures strict standards, strong security, and reliability in communication.
Step 3: What is the SOAP messaging format?
SOAP messages are in XML and include an Envelope, Header, and Body.
Step 4: What is a SOAP Envelope?
The root element that defines the start and end of the SOAP message.
Step 5: What is a SOAP Header?
An optional section for metadata like authentication, transaction IDs, or routing info.
Step 6: What is a SOAP Body?
The main section containing the actual request or response data.
Step 7: What is a SOAP Fault?
An error message returned when a request cannot be processed.
Step 8: What is WSDL?
Web Services Description Language — an XML file that defines the operations and structure of a SOAP service.
Step 9: Why is WSDL important?
It allows clients to understand how to call the service and what data is required.
Step 10: What is UDDI?
Universal Description, Discovery, and Integration — a registry for finding web services.
Step 11: What protocols can SOAP use?
HTTP, HTTPS, SMTP, JMS, and more.
Step 12: What is RPC-style SOAP?
Each request is treated as a remote procedure call with parameters.
Step 13: What is Document-style SOAP?
Entire XML documents are sent and received instead of direct function calls.
Step 14: What is the difference between SOAP 1.1 and SOAP 1.2?
SOAP 1.2 has improved error handling and more standardized processing rules.
Step 15: What is a SOAP client?
An application that sends SOAP requests to a SOAP server.
Step 16: What is a SOAP server?
A service that receives and processes SOAP requests.
Step 17: What is a SOAP action?
A specific header field that indicates the intent of the SOAP request.
Step 18: What is an XSD in SOAP?
XML Schema Definition — defines the structure and data types of XML messages.
Step 19: What is SOAP encoding?
A set of rules for serializing data types in SOAP messages.
Step 20: What is a SOAP attachment?
Binary data sent with a SOAP message, usually using MIME encoding.

Intermediate Level (21–35)
Step 21: What is WS-Security in SOAP?
A standard for securing SOAP messages with encryption, signatures, and tokens.
Step 22: What is message-level security?
Encrypting the actual SOAP message rather than just the transport layer.
Step 23: What is transport-level security?
Using HTTPS or other protocols to secure the connection.
Step 24: What is a SOAP intermediary?
A system that processes SOAP headers before forwarding the message.
Step 25: What is SOAP routing?
Defining how messages travel through intermediaries before reaching the final recipient.
Step 26: What is WS-Addressing?
A standard for including routing information in SOAP headers.
Step 27: What is WS-ReliableMessaging?
Ensures guaranteed message delivery even in case of network failures.
Step 28: What is WS-AtomicTransaction?
Supports distributed transactions across multiple services.
Step 29: What is WS-Policy?
A way for services to declare security and reliability requirements.
Step 30: What is SOAP over JMS?
Using Java Messaging Service as the transport protocol for SOAP.
Step 31: What is SOAP over SMTP?
Sending SOAP messages via email protocols.
Step 32: What is SOAP over TCP?
Using TCP for faster SOAP communication within networks.
Step 33: Why is SOAP more secure than REST?
SOAP supports WS-Security, XML encryption, and strict schemas.
Step 34: What is schema validation in SOAP?
Checking that XML messages follow the rules defined in the XSD.
Step 35: What is the difference between SOAP and XML-RPC?
SOAP is more feature-rich with standards like WS-Security; XML-RPC is simpler.

Advanced Level (36–50)
Step 36: What is SOAP message optimization?
Techniques like MTOM (Message Transmission Optimization Mechanism) to send binary data efficiently.
Step 37: What is MTOM in SOAP?
A method for efficiently sending binary data in SOAP messages.
Step 38: What is SwA in SOAP?
SOAP with Attachments — another method for sending files with SOAP.
Step 39: What is SOAP binding?
Defines how SOAP messages are transmitted over a specific protocol.
Step 40: What is literal vs encoded SOAP binding?
· Literal: XML matches the schema exactly.
· Encoded: Uses SOAP encoding rules.
Step 41: What is document-literal-wrapped style?
A WSDL style where each operation has a single XML wrapper element.
Step 42: What is WS-Federation?
A standard for identity sharing between security domains in SOAP services.
Step 43: What is WS-Trust?
Defines extensions for issuing, renewing, and validating security tokens.
Step 44: What is WS-SecureConversation?
Establishes a secure communication session between client and server.
Step 45: What is SOAP fault code vs fault string?
· Fault Code: Type of error.
· Fault String: Human-readable error message.
Step 46: What is SOAP logging?
Recording SOAP request and response messages for debugging.
Step 47: What is SOAP message replay protection?
Preventing malicious re-use of captured SOAP messages.
Step 48: What is a SOAP load test?
Simulating high traffic to measure SOAP service performance.
Step 49: What is SOAP service mocking?
Creating fake SOAP endpoints for development/testing.
Step 50: Best practices for SOAP services
· Always validate XML against XSD.
· Use WS-Security for sensitive data.
· Keep WSDLs updated.
· Log errors with enough context.


Section 4: API Security & Management — 50 Steps
Beginner Level (1–20)
Step 1: What is API security?
The practice of protecting APIs from unauthorized access, misuse, and attacks.
Step 2: Why is API security important?
APIs often handle sensitive data, so they’re prime targets for hackers.
Step 3: What is authentication in APIs?
Verifying the identity of the user or system making the request.
Step 4: What is authorization in APIs?
Determining what resources an authenticated user can access.
Step 5: What is an API key?
A unique identifier used for authentication and tracking API usage.
Step 6: Why should API keys be kept secret?
If leaked, attackers can make requests as if they were you.
Step 7: What is Basic Authentication?
Using a username and password encoded in Base64 for access.
Step 8: What is OAuth 2.0?
A protocol that allows secure delegated API access without sharing credentials.
Step 9: What is JWT (JSON Web Token)?
A compact, signed token used for secure API authentication.
Step 10: What is mutual TLS?
Both client and server verify each other’s identity using SSL certificates.
Step 11: What is HTTPS?
A secure version of HTTP that encrypts data in transit.
Step 12: Why use HTTPS for APIs?
It protects against eavesdropping and man-in-the-middle attacks.
Step 13: What is API rate limiting?
Restricting the number of requests per user or app in a given timeframe.
Step 14: What is API throttling?
Slowing down request processing to prevent overload.
Step 15: What is IP whitelisting?
Allowing API access only from approved IP addresses.
Step 16: What is a CORS policy?
A security rule controlling which domains can call your API.
Step 17: What is API versioning for security?
Maintaining multiple versions so older ones can be retired safely.
Step 18: What is API logging?
Recording API requests, responses, and errors for security analysis.
Step 19: What is API monitoring?
Tracking API performance, uptime, and potential attacks.
Step 20: What is an API gateway?
A management tool that controls, secures, and routes API traffic.

Intermediate Level (21–35)
Step 21: What is an API token?
A secure, temporary key for authentication, often short-lived.
Step 22: What is token expiration?
Setting tokens to expire after a certain time for better security.
Step 23: What is token refresh?
Requesting a new token without logging in again.
Step 24: What is HMAC authentication?
Using a hashed message authentication code for request verification.
Step 25: What is API encryption at rest?
Storing sensitive data in encrypted form.
Step 26: What is API encryption in transit?
Encrypting data while it’s moving between systems.
Step 27: What is payload signing?
Digitally signing API request data to prevent tampering.
Step 28: What is API replay protection?
Blocking repeated use of captured API requests.
Step 29: What is a security token service (STS)?
A system that issues security tokens for API access.
Step 30: What is role-based access control (RBAC)?
Restricting API access based on user roles.
Step 31: What is attribute-based access control (ABAC)?
Restricting access based on user attributes (e.g., department).
Step 32: What is API anomaly detection?
Identifying unusual traffic patterns that may indicate an attack.
Step 33: What is API abuse detection?
Finding and blocking malicious API usage.
Step 34: What is an API firewall?
A security layer filtering and blocking suspicious requests.
Step 35: What is API DDoS protection?
Defending against Distributed Denial of Service attacks targeting APIs.

Advanced Level (36–50)
Step 36: What is zero trust security for APIs?
Never trust, always verify — even for internal API calls.
Step 37: What is API penetration testing?
Simulating attacks to find vulnerabilities in APIs.
Step 38: What is API fuzz testing?
Sending random or invalid inputs to see how the API reacts.
Step 39: What is API schema validation?
Ensuring requests follow the defined schema to avoid injection attacks.
Step 40: What is API threat modeling?
Analyzing possible attack paths and weaknesses in an API.
Step 41: What is API security automation?
Using tools to automatically check API vulnerabilities.
Step 42: What is API governance?
Defining security, usage, and quality rules for APIs across an organization.
Step 43: What is API SLA (Service Level Agreement)?
A contract defining API availability, performance, and support guarantees.
Step 44: What is API observability?
Gaining insight into API health, performance, and failures.
Step 45: What is API key rotation?
Regularly changing keys to reduce risk from leaks.
Step 46: What is API secrets management?
Storing keys, passwords, and tokens securely using vaults.
Step 47: What is API incident response?
The process of investigating and mitigating API security breaches.
Step 48: What is API compliance?
Meeting legal and regulatory standards like GDPR or HIPAA.
Step 49: What is API vulnerability scanning?
Automatically finding security flaws in APIs.
Step 50: Best practices for API security
· Use HTTPS everywhere.
· Apply least privilege access.
· Monitor and log all requests.
· Rotate keys and tokens regularly.
· Validate all inputs.


Section 5: Advanced API Concepts — 50 Steps
Beginner-to-Intermediate (1–20)
Step 1: What is an API design pattern?
A reusable solution to common API development problems.
Step 2: What is RESTful design?
Using HTTP methods, clear endpoints, and stateless communication.
Step 3: What is API-first development?
Designing the API before building the actual application.
Step 4: What is API-as-a-Product?
Treating the API like a product, with documentation, support, and monetization.
Step 5: What is API monetization?
Charging for API usage via subscription, pay-per-use, or freemium models.
Step 6: What is API discoverability?
Making APIs easy for developers to find and understand.
Step 7: What is API scalability?
Designing APIs to handle increasing load without performance loss.
Step 8: What is API maintainability?
Making APIs easy to update, fix, and improve.
Step 9: What is API reusability?
Designing APIs so they can be reused across multiple applications.
Step 10: What is GraphQL?
An API query language that lets clients request exactly the data they need.
Step 11: What is GraphQL mutation?
A way to change data in a GraphQL API.
Step 12: What is GraphQL subscription?
A real-time data update mechanism in GraphQL.
Step 13: What is gRPC?
A high-performance API framework using Protocol Buffers for serialization.
Step 14: What is Protocol Buffers (Protobuf)?
A binary serialization format used by gRPC for faster communication.
Step 15: What is an API facade?
A single API that hides complex backend systems from the client.
Step 16: What is an API adapter?
A layer that translates requests between incompatible systems.
Step 17: What is an API proxy?
A middle layer that forwards API requests and responses.
Step 18: What is a composite API?
An API that combines responses from multiple services into one.
Step 19: What is API chaining?
Executing multiple API calls in sequence to complete a process.
Step 20: What is API orchestration?
Coordinating multiple APIs to work together as one workflow.

Intermediate-to-Advanced (21–35)
Step 21: What is API virtualization?
Creating simulated APIs for testing when the real ones are unavailable.
Step 22: What is API load balancing?
Distributing requests across multiple servers for performance.
Step 23: What is API failover?
Switching to backup servers if the main one fails.
Step 24: What is API blue-green deployment?
Switching traffic between two identical environments for updates with zero downtime.
Step 25: What is API canary release?
Rolling out new API features to a small group before full deployment.
Step 26: What is API schema evolution?
Updating API data models without breaking clients.
Step 27: What is backward compatibility in APIs?
Ensuring new changes don’t break existing client applications.
Step 28: What is forward compatibility in APIs?
Ensuring old clients can still work with future changes.
Step 29: What is API sandboxing?
Providing a safe test environment for developers.
Step 30: What is an API lifecycle?
Stages: Design → Develop → Test → Deploy → Monitor → Retire.
Step 31: What is event-driven API architecture?
APIs that trigger actions when specific events occur.
Step 32: What is webhook vs polling?
· Webhook: Server pushes updates to client.
· Polling: Client repeatedly checks for updates.
Step 33: What is API schema registry?
A centralized place to store and manage API schemas.
Step 34: What is hypermedia API?
APIs that include navigational links in responses (HATEOAS).
Step 35: What is API telemetry?
Collecting real-time metrics from API usage.

Advanced Concepts (36–50)
Step 36: What is API microgateway?
A lightweight gateway deployed close to services for local API control.
Step 37: What is API mesh?
A network of interconnected APIs managed as a whole.
Step 38: What is API federation?
Merging multiple APIs into a single unified API.
Step 39: What is API discoverability in microservices?
Using service discovery to locate APIs in a distributed environment.
Step 40: What is API sharding?
Splitting API data or traffic across multiple servers for efficiency.
Step 41: What is multi-tenancy in APIs?
Supporting multiple separate customers within a single API instance.
Step 42: What is API analytics?
Tracking API usage trends for optimization and business insights.
Step 43: What is AI-powered API optimization?
Using machine learning to improve API performance and scaling.
Step 44: What is API chaos testing?
Intentionally causing failures to test API resilience.
Step 45: What is API self-healing?
Automatically recovering from failures using automation.
Step 46: What is API contract testing?
Verifying that API responses meet agreed-upon specifications.
Step 47: What is API schema linting?
Checking API specifications for consistency and errors.
Step 48: What is API monetization platform?
A tool for managing API subscriptions, billing, and payments.
Step 49: What is API sustainability?
Designing APIs to minimize energy consumption and infrastructure costs.
Step 50: Best practices for advanced APIs
· Design for scale from the start.
· Monitor continuously.
· Use automated tests.
· Keep security in mind at all times.

