Part 1: Fundamentals of Manual Testing (1–20)
1. What is manual testing?
Manual testing is the process of executing test cases without using automation tools.
2. Why is manual testing important?
It helps find bugs in scenarios where automation is impractical or expensive.
3. What is software testing?
The process of evaluating software to ensure it meets requirements and works as expected.
4. What is the objective of testing?
To detect defects, ensure quality, and verify functionality.
5. What are the types of software testing?
Functional testing, non-functional testing, and maintenance testing.
6. What is the difference between verification and validation?
· Verification: Ensuring the product is built correctly.
· Validation: Ensuring the right product is built.
7. What is a defect?
A flaw in the software that causes incorrect or unexpected behavior.
8. What is a bug report?
A document describing a defect, steps to reproduce it, and expected results.
9. What is a test case?
A set of conditions and steps to verify a specific feature.
10. What is a test scenario?
A high-level description of what needs to be tested.
11. What is a test plan?
A document that describes the testing approach, scope, and objectives.
12. What is a test strategy?
A high-level document describing the testing principles and objectives for a project.
13. What is exploratory testing?
An informal testing approach where testers explore the application without predefined test cases.
14. What is ad-hoc testing?
Unstructured testing without documentation, performed to quickly find defects.
15. What is smoke testing?
A basic check to ensure the main functions of the application work.
16. What is sanity testing?
Testing to verify that a small change hasn’t broken existing functionality.
17. What is regression testing?
Re-testing to ensure new changes haven’t introduced defects in existing functionality.
18. What is functional testing?
Testing features against functional requirements.
19. What is non-functional testing?
Testing aspects like performance, usability, and security.
20. What is usability testing?
Checking how user-friendly the application is.

Part 2: Testing Process & Documentation (21–40)
21. What is the Software Development Life Cycle (SDLC)?
A framework defining stages from requirement gathering to maintenance.
22. What is the Software Testing Life Cycle (STLC)?
A process defining the stages of testing from planning to closure.
23. What are the phases of STLC?
Requirement Analysis → Test Planning → Test Case Design → Test Execution → Defect Reporting → Test Closure.
24. What is a requirement traceability matrix (RTM)?
A document mapping requirements to test cases.
25. What is a test environment?
A setup of hardware, software, and configurations used for testing.
26. What is the difference between test data and production data?
· Test data: Used for testing.
· Production data: Used in the live environment.
27. What is boundary value analysis (BVA)?
Testing at the edge values of input ranges.
28. What is equivalence partitioning?
Dividing inputs into valid and invalid partitions for testing.
29. What is positive testing?
Testing with valid inputs to verify expected results.
30. What is negative testing?
Testing with invalid inputs to check error handling.
31. What is acceptance testing?
Testing to ensure the product meets business requirements.
32. What is alpha testing?
Testing performed by internal teams before release.
33. What is beta testing?
Testing performed by external users before release.
34. What is compatibility testing?
Testing the software on different browsers, devices, or OS.
35. What is cross-browser testing?
Checking that the application works across different browsers.
36. What is performance testing?
Measuring how the system performs under different loads.
37. What is load testing?
Testing how the application performs under expected load.
38. What is stress testing?
Testing the system beyond expected limits.
39. What is recovery testing?
Testing the system’s ability to recover from crashes or failures.
40. What is installation testing?
Verifying that the software installs and uninstalls correctly.

Part 3: Defects & Quality (41–60)
41. What is defect severity?
How serious the defect is in terms of impact.
42. What is defect priority?
How quickly the defect should be fixed.
43. What is the difference between severity and priority?
· Severity: Impact on system.
· Priority: Urgency of fix.
44. What is a defect life cycle?
The stages a defect goes through from detection to closure.
45. What is the difference between defect, error, and failure?
· Error: Mistake in code.
· Defect: Found in testing.
· Failure: Defect found in production.
46. What is root cause analysis?
Identifying the main reason for a defect.
47. What is quality assurance (QA)?
Ensuring processes are in place to deliver quality products.
48. What is quality control (QC)?
Checking the actual product for defects.
49. What is the difference between QA and QC?
QA is process-oriented, QC is product-oriented.
50. What is test coverage?
The percentage of requirements or code covered by testing.
51. What is 100% test coverage?
When all planned requirements or code paths are tested.
52. What is defect leakage?
When defects are missed in testing and found later.
53. What is defect density?
Number of defects per size of the software module.
54. What is the cost of quality?
Total cost to ensure the product meets quality standards.
55. What is software reliability?
The probability that software will work without failure for a given period.
56. What is maintainability in software?
Ease of modifying the system after release.
57. What is reusability in testing?
Ability to use the same test cases in different projects.
58. What is interoperability testing?
Testing how well the software interacts with other systems.
59. What is localization testing?
Checking language and region-specific features.
60. What is globalization testing?
Ensuring the software works worldwide without modifications.

Part 4: Testing Techniques & Best Practices (61–100)
61. What is static testing?
Reviewing code, documents, or requirements without execution.
62. What is dynamic testing?
Executing the application to find defects.
63. What is black-box testing?
Testing without knowing the internal code.
64. What is white-box testing?
Testing with full knowledge of the code.
65. What is grey-box testing?
Testing with partial knowledge of the code.
66. What is unit testing?
Testing individual components in isolation.
67. What is integration testing?
Testing combined modules to ensure they work together.
68. What is system testing?
Testing the entire system as a whole.
69. What is end-to-end testing?
Testing the complete workflow of the application.
70. What is monkey testing?
Random testing without predefined inputs.
71. What is pair testing?
Two testers work together on the same functionality.
72. What is session-based testing?
Time-boxed exploratory testing sessions.
73. What is checklist-based testing?
Testing based on a predefined checklist.
74. What is domain testing?
Testing values within a particular domain range.
75. What is use case testing?
Testing based on documented use cases.
76. What is decision table testing?
Testing using conditions and actions in a tabular form.
77. What is state transition testing?
Testing changes in application state based on events.
78. What is error guessing?
Using tester’s experience to guess where defects may be.
79. What is a test harness?
A setup of tools and data to execute tests.
80. What is defect clustering?
Defects tend to cluster in certain modules.
81. What is pesticide paradox?
If the same tests are run repeatedly, they stop finding new defects.
82. How to overcome pesticide paradox?
Regularly update and improve test cases.
83. What is exploratory vs ad-hoc testing?
· Exploratory: Structured but not scripted.
· Ad-hoc: Completely unstructured.
84. What is a test oracle?
The source of truth to verify expected results.
85. What is acceptance criteria?
Conditions that must be met for a feature to be accepted.
86. What is shift-left testing?
Starting testing earlier in the development process.
87. What is shift-right testing?
Testing after deployment, in production.
88. What is continuous testing?
Running tests as part of the CI/CD pipeline.
89. What is a bug triage?
Prioritizing and assigning bugs for fixing.
90. What is defect prevention?
Taking measures to avoid introducing defects.
91. What is software configuration management in testing?
Tracking and controlling software changes during testing.
92. What is a test summary report?
A document summarizing testing activities and results.
93. What is a test closure report?
A final document confirming testing is complete.
94. What is a walk-through in testing?
An informal review of documents or code.
95. What is an inspection in testing?
A formal, detailed review process.
96. What is a peer review in testing?
Reviewing work products by colleagues.
97. What is the difference between static and dynamic testing?
· Static: No execution.
· Dynamic: Requires execution.
98. What is a risk-based testing approach?
Focusing on high-risk areas first.
99. What is a test readiness review?
A meeting to ensure the test environment and data are ready.
100. What is the role of a manual tester?
Designing, executing, and documenting tests to ensure software quality.


Part 1: Advanced Concepts & Best Practices (101–130)
101. What is exploratory testing’s biggest advantage?
It uncovers unexpected defects quickly without heavy documentation.
102. What is the difference between QA and Testing?
· QA: Process-oriented, ensures quality in the process.
· Testing: Product-oriented, finds defects in the product.
103. What is the difference between manual and automated testing?
· Manual: Human execution of tests.
· Automated: Scripts and tools execute tests automatically.
104. Why do some companies still prefer manual testing?
Because exploratory, usability, and visual checks are best done manually.
105. What is risk-based testing?
Prioritizing testing efforts on high-risk areas.
106. What is a showstopper bug?
A defect that blocks further testing or product release.
107. What is test data preparation?
Creating the required input data before test execution.
108. What is a smoke vs sanity testing difference?
· Smoke: Checks if the main build is stable.
· Sanity: Checks small changes after a fix.
109. What is alpha vs beta testing difference?
· Alpha: Internal testers before release.
· Beta: Real users before final release.
110. What is a heuristic in testing?
A problem-solving approach using experience-based techniques.
111. What is equivalence class testing?
Grouping inputs that should be treated the same.
112. What is pairwise testing?
Testing combinations of input parameters in pairs to reduce effort.
113. What is test prioritization?
Running the most important tests first when time is limited.
114. What is defect rejection ratio?
The percentage of defects reported that are rejected.
115. What is defect reproducibility?
The ability to reproduce a defect consistently.
116. What is defect slippage?
When defects are found in production after passing testing.
117. What is defect turnaround time?
The time taken from reporting to fixing a defect.
118. What is exploratory testing charter?
A statement defining scope, objectives, and time for exploratory testing.
119. What is domain knowledge in testing?
Understanding the business area the application serves.
120. Why is domain knowledge important for testers?
It improves the ability to identify business-critical defects.
121. What is API testing in manual QA?
Testing APIs using tools like Postman without automation frameworks.
122. What is mobile application manual testing?
Testing mobile apps on real devices or simulators.
123. What is desktop application manual testing?
Testing software installed locally on PCs or laptops.
124. What is localization vs globalization testing difference?
· Localization: Adapting to specific regions.
· Globalization: Ensuring the app works worldwide.
125. What is test optimization?
Reducing test cases while maintaining coverage.
126. What is testing debt?
Unfinished or skipped tests that need to be addressed later.
127. What is shift-left testing?
Starting testing earlier in the development cycle.
128. What is shift-right testing?
Testing in production or post-deployment.
129. What is the main role of a test lead?
To plan, coordinate, and ensure the quality of the testing process.
130. What is the main role of a test manager?
To oversee overall testing strategy, resources, and quality goals.

Part 2: Real-World Scenarios (131–160)
131. What will you do if you find a critical bug just before release?
Immediately report it to stakeholders and assess the impact before release.
132. How do you test without requirements?
Use exploratory testing, talk to stakeholders, and review similar systems.
133. How do you handle vague requirements?
Seek clarification, write assumptions, and confirm with the client.
134. What do you do if developers disagree with your bug?
Reproduce the defect with proof, logs, and steps.
135. How do you test under tight deadlines?
Prioritize high-risk and critical test cases first.
136. How do you test a login page?
Check valid/invalid credentials, security, UI, and performance.
137. How do you test a search feature?
Check results accuracy, filters, sorting, and edge cases.
138. How do you test a payment gateway?
Check success, failure, network issues, and security.
139. How do you test without access to the backend?
Focus on front-end validations, API calls, and UI behavior.
140. How do you test a mobile app with limited devices?
Test on critical devices and use emulators/simulators.
141. How do you test for accessibility?
Check for screen reader compatibility, keyboard navigation, and contrast.
142. How do you test a new feature in production?
Use feature flags and perform smoke tests in the live environment.
143. How do you test in an agile environment?
Collaborate closely with developers, perform exploratory testing, and keep test cases short.
144. How do you test a bug fix?
Perform regression tests around the changed area.
145. How do you handle repetitive test cases?
Document them and evaluate for automation later.
146. How do you test performance manually?
Observe response times and simulate load with multiple users if possible.
147. How do you test third-party integrations?
Validate data exchange, error handling, and contract compliance.
148. How do you test cloud-based apps?
Check scalability, security, and multi-location performance.
149. How do you test an API manually?
Use tools like Postman to send requests and verify responses.
150. How do you ensure test coverage?
Map test cases to requirements in a traceability matrix.
151. How do you test a file upload feature?
Check allowed formats, file size limits, and error handling.
152. How do you test notifications?
Check timing, format, content, and delivery method.
153. How do you test a form?
Check validations, error messages, and submission process.
154. How do you test session management?
Verify timeouts, logout functionality, and session persistence.
155. How do you test email functionality?
Check correct recipients, format, and spam folder behavior.
156. How do you test an API without documentation?
Use tools to inspect requests/responses and reverse engineer usage.
157. How do you test browser compatibility?
Run tests across different browsers and devices.
158. How do you test a multi-language application?
Check translations, formatting, and cultural appropriateness.
159. How do you test a chat application?
Check message delivery, typing indicators, and offline messages.
160. How do you test a data migration?
Compare source and destination data for completeness and accuracy.

Part 3: Interview-Focused (161–200)
161. Explain STLC in 2 minutes.
Requirement Analysis → Planning → Test Design → Execution → Defect Reporting → Closure.
162. Difference between regression and retesting?
· Regression: Checks old functionality.
· Retesting: Checks if a specific defect is fixed.
163. Difference between severity and priority with an example?
High severity, low priority: A typo in a legal disclaimer.
164. Give an example of a high priority, low severity bug.
A company logo linking to the wrong page before a big launch.
165. What is boundary value analysis example?
If age limit is 18–60, test 17, 18, 60, and 61.
166. What is equivalence partitioning example?
Group ages into <18, 18–60, and >60 for testing.
167. What are exit criteria in testing?
Conditions that must be met to stop testing.
168. What is entry criteria in testing?
Conditions that must be met to start testing.
169. What is the difference between validation and verification?
Verification checks process, validation checks product.
170. What are non-functional testing types?
Performance, usability, security, compatibility.
171. What are functional testing types?
Unit, integration, system, acceptance.
172. What is a bug triage meeting?
A meeting to prioritize and assign defects.
173. What is a use case?
A sequence of steps showing how a user interacts with the system.
174. What is the difference between positive and negative testing?
Positive tests valid inputs; negative tests invalid inputs.
175. What is a test harness example?
A toolset for running tests with mock data.
176. What is a test oracle example?
A database dump used to verify API responses.
177. What is the pesticide paradox in real life?
Running the same login tests daily stops finding new issues.
178. What is an example of defect clustering?
Most bugs in an e-commerce site are found in checkout.
179. What is exploratory testing example?
Randomly navigating a new mobile app to find issues.
180. What is the difference between alpha and beta testing with example?
· Alpha: Internal testing before release.
· Beta: Users test before final release.
181. How do you test a feature with no UI?
Test APIs or backend logs.
182. How do you report a bug effectively?
Include title, steps, expected vs actual, screenshots/logs.
183. How do you explain a missed defect?
Acknowledge, find the cause, and add coverage.
184. How do you handle conflicts with developers?
Stay professional, show proof, and focus on the issue.
185. How do you handle too many open bugs?
Prioritize by severity and business impact.
186. What is the main skill a manual tester should have?
Attention to detail.
187. Why is communication important in testing?
To clearly report defects and collaborate with teams.
188. Why should testers know SQL?
To validate backend data.
189. Why should testers know basic API testing?
To test services without full UI.
190. How does Agile affect testing?
Testing is continuous and iterative.
191. What is continuous testing example?
Running regression tests automatically after each build.
192. What is shift-left example?
Reviewing test cases during design phase.
193. What is shift-right example?
Monitoring live app performance.
194. Why is exploratory testing useful in Agile?
It’s fast and adaptable.
195. How do you test for security manually?
Check input validation, session handling, and access control.
196. What is compliance testing?
Ensuring the app meets legal/regulatory requirements.
197. What is end-to-end testing example?
Placing an order and tracking it to delivery.
198. What is integration testing example?
Testing payment gateway and order management together.
199. What is the future of manual testing?
More focus on usability, exploratory, and domain knowledge.
200. What advice for a beginner manual tester?
Learn basics, practice test cases, and understand the business domain.

