Section 1: Java Basics (Q1–Q10)
1. What is Java?
Java is an object-oriented, platform-independent, high-level programming language that follows the "Write Once, Run Anywhere" principle.
2. What is JVM?
JVM (Java Virtual Machine) is the runtime environment that executes Java bytecode.
3. What is the difference between JDK and JRE?
· JDK: JRE + development tools (compilers, debuggers).
· JRE: JVM + libraries for running Java programs.
4. What is bytecode?
Bytecode is platform-independent code generated by the Java compiler, executed by the JVM.
5. Why is Java platform-independent?
Because compiled bytecode runs on any system with a JVM.
6. What is the signature of the main method in Java?
public static void main(String[] args)
7. Difference between a variable and a constant?
A variable’s value can change; a constant’s value (declared with final) cannot.
8. What is a wrapper class?
A class that wraps primitive types into objects (e.g., Integer, Double).
9. Difference between == and .equals()?
== compares references; .equals() compares values.
10. Difference between final, finally, and finalize()?
· final: Used for constants, prevents method overriding or inheritance.
· finally: Block that executes after try-catch.
· finalize(): Called before garbage collection.

Section 2: OOP Concepts (Q11–Q20)
11. What are the four pillars of OOP?
Encapsulation, Inheritance, Polymorphism, Abstraction.
12. What is encapsulation?
Wrapping data and methods in a single unit and restricting direct access.
13. What is abstraction?
Hiding implementation details and showing only essential features.
14. Types of inheritance in Java?
Single, Multilevel, Hierarchical (multiple inheritance not directly supported).
15. What is method overloading?
Same method name with different parameter lists.
16. What is method overriding?
Redefining a parent class method in a child class.
17. Difference between interface and abstract class?
Interface: All methods abstract by default.
Abstract class: Can have both abstract and non-abstract methods.
18. What is super keyword?
Refers to the parent class and can be used to call parent methods/constructors.
19. What is constructor overloading?
Multiple constructors in the same class with different parameter lists.
20. What is this keyword?
Refers to the current object.

Section 3: Strings & Collections (Q21–Q30)
21. Why are strings immutable in Java?
For security, caching, and thread safety.
22. Difference between StringBuilder and StringBuffer?
StringBuilder is faster but not synchronized; StringBuffer is synchronized.
23. What is the String pool?
A special memory area where string literals are stored.
24. Difference between ArrayList and LinkedList?
ArrayList is faster for random access; LinkedList is faster for insert/delete.
25. Difference between HashMap and Hashtable?
HashMap is not synchronized; Hashtable is synchronized.
26. Why doesn’t HashSet allow duplicates?
It uses hashing which ensures unique keys.
27. Difference between Comparable and Comparator?
Comparable defines natural order; Comparator defines custom order.
28. Difference between fail-fast and fail-safe iterators?
Fail-fast throws an exception if modified during iteration; fail-safe iterates over a copy.
29. What is a PriorityQueue?
A queue that orders elements based on natural or custom order.
30. Difference between TreeMap and HashMap?
TreeMap is sorted; HashMap is unordered.

Section 4: Exception Handling (Q31–Q40)
31. Difference between checked and unchecked exceptions?
Checked: Checked at compile-time.
Unchecked: Checked at runtime.
32. Flow of try-catch-finally?
try → catch (if exception) → finally (always executes).
33. Difference between throw and throws?
throw: Used to throw a single exception.
throws: Declares possible exceptions.
34. How to create a custom exception?
Extend Exception or RuntimeException.
35. How do multiple catch blocks work?
The first matching exception type is executed.
36. Does finally block always execute?
Yes, except when JVM exits using System.exit().
37. What is try-with-resources?
Automatically closes resources declared inside try.
38. Difference between Error and Exception?
Error: Serious problem not handled by programs.
Exception: Can be handled.
39. Example of RuntimeException?
NullPointerException, ArrayIndexOutOfBoundsException.
40. What is SQLException?
Exception related to database operations in JDBC.
Section 5: Multithreading (Q41–Q50)
41. What is a thread?
The smallest unit of execution in a program.
42. Advantages of multithreading?
Faster execution, better CPU utilization, and responsiveness.
43. Two ways to create a thread in Java?
Extend the Thread class or implement the Runnable interface.
44. Purpose of synchronized keyword?
Prevents multiple threads from accessing shared resources simultaneously.
45. What is a deadlock?
When two or more threads wait indefinitely for each other’s resources.
46. Example of a thread-safe class?
StringBuffer, Vector.
47. What is volatile keyword?
Ensures visibility of variable changes across threads immediately.
48. Difference between sleep() and wait()?
sleep() pauses for a time without releasing the lock; wait() releases the lock and waits.
49. What is thread priority?
The scheduling hint for threads (range 1–10).
50. What is the Executor framework?
A set of utilities for managing thread pools.

Section 6: Java 8 Features (Q51–Q60)
51. What is a lambda expression?
A short block of code that takes parameters and returns a value without a name.
52. What is a functional interface?
An interface with exactly one abstract method.
53. What is the Streams API?
Allows functional-style operations on collections.
54. What is the Optional class?
A container to handle null values safely.
55. What is a method reference?
A shorthand for calling a method via ::.
56. What is a default method in an interface?
A method with a default implementation inside an interface.
57. What are Predicate, Function, and Consumer?
Predefined functional interfaces in Java 8.
58. Difference between filter() and map() in Streams?
filter() removes elements; map() transforms elements.
59. What is a parallel stream?
Processes stream elements concurrently.
60. What are Instant and LocalDateTime?
Classes from Java 8 Date-Time API.

Section 7: Memory Management (Q61–Q70)
61. What is garbage collection?
Automatic removal of unused objects from memory.
62. Purpose of finalize() method?
Runs before an object is garbage collected (deprecated in newer Java).
63. Difference between heap and stack memory?
Heap stores objects; stack stores method calls and local variables.
64. What is a memory leak in Java?
Unused objects remain referenced, preventing GC.
65. Difference between SoftReference and WeakReference?
Weak references are collected more aggressively than soft references.
66. Difference between PermGen and Metaspace?
PermGen was fixed-size; Metaspace grows dynamically (Java 8+).
67. What causes OutOfMemoryError?
Heap is full and cannot allocate more memory.
68. What is StackOverflowError?
Too deep recursion or excessive stack usage.
69. How to tune JVM memory?
Using options like -Xmx and -Xms.
70. What is ReferenceQueue?
Holds references after GC collects them.

Section 8: File I/O (Q71–Q80)
71. Difference between FileReader and FileWriter?
FileReader reads characters; FileWriter writes characters.
72. Why use BufferedReader?
Improves efficiency when reading large files.
73. What is serialization?
Converting an object into a byte stream.
74. What is deserialization?
Converting a byte stream back into an object.
75. What is transient keyword?
Skips a variable during serialization.
76. What are Path and Files classes?
Utility classes from Java NIO for file operations.
77. What is RandomAccessFile?
Allows read/write at specific file positions.
78. Difference between InputStream and Reader?
InputStream handles bytes; Reader handles characters.
79. Difference between OutputStream and Writer?
OutputStream writes bytes; Writer writes characters.
80. What is ObjectOutputStream?
Writes objects in serialized form to a stream.

Section 9: Advanced Java (Q81–Q90)
81. What is JDBC?
Java Database Connectivity API for database operations.
82. Difference between Statement and PreparedStatement?
PreparedStatement is precompiled, faster, and safer.
83. What is a ResultSet?
A table of data returned by a database query.
84. What is connection pooling?
Reusing database connections for efficiency.
85. What is a servlet?
A Java program that handles HTTP requests on the server.
86. What is JSP?
Java Server Pages for embedding Java into HTML.
87. What is JPA?
Java Persistence API for ORM.
88. What is Hibernate?
A popular ORM framework for Java.
89. What is RMI?
Remote Method Invocation for calling remote objects.
90. What is JMS?
Java Message Service for asynchronous communication.

Section 10: Miscellaneous (Q91–Q100)
91. What is an enum?
A type that defines a set of constants.
92. What is an annotation?
Metadata for code elements.
93. What is the Reflection API?
Allows inspection and modification of code at runtime.
94. What is a marker interface?
An interface with no methods (e.g., Serializable).
95. What is the Singleton pattern?
Ensures only one instance of a class exists.
96. What is the Factory pattern?
Encapsulates object creation.
97. What is dependency injection?
Providing required objects from outside a class.
98. How to make a class immutable?
Declare it final, fields final, no setters.
99. Why override equals() and hashCode()?
To ensure correct behavior in hash-based collections.
100. Java best practices?
Follow naming conventions, handle exceptions, manage resources, write thread-safe code.
Section 11: String Handling & Logic (Q101–Q120)
101. How to count uppercase and lowercase letters in a String?
Iterate characters and use Character.isUpperCase() / isLowerCase().
102. How to toggle case of characters in a String?
Iterate and convert uppercase to lowercase and vice versa.
103. How to reverse a String without built-in methods?
Use a loop from the end to the start to build a new string.
104. How to remove special characters from a String?
Use replaceAll("[^a-zA-Z0-9]", "").
105. How to check if a String contains only letters and spaces?
Use matches("[a-zA-Z]+").
106. How to check if one String is a rotation of another?
Concatenate the first string with itself and check contains().
107. How to check palindrome using recursion?
Compare first and last characters, then recurse on the substring.
108. How to capitalize the first letter of each word?
Split into words, capitalize first letter, and join.
109. How to replace only the first occurrence in a String?
Use replaceFirst().
110. How to find duplicate words in a String?
Split into words and count using a Map.
111. How to convert a String to title case?
Capitalize the first letter of each word.
112. How to reverse words but keep punctuation positions?
Skip non-letter characters during reversal.
113. How to convert String to char array without spaces?
replace(" ", "").toCharArray().
114. How to split comma-separated values into an array?
Use split(",").
115. How to swap the first and last character of a String?
Use a StringBuilder and set characters.
116. How to print ASCII values of characters?
Cast each char to (int).
117. How to swap two characters in a String?
Convert to char array and swap.
118. How to count palindrome subsequences in a String?
Use recursion or dynamic programming.
119. How to check balanced brackets in a String?
Use a stack to track opening/closing brackets.
120. How to convert String to Morse code?
Map each letter to its Morse equivalent and join.

Section 12: Number & Math Problems (Q121–Q140)
121. How to check prime using bitwise method?
Test divisibility up to √n.
122. How to find the next prime number?
Increment from N+1 until prime found.
123. How to check palindrome number using recursion?
Reverse digits recursively and compare.
124. How to find factorial recursively?
Base case 1; return n * factorial(n-1).
125. How to find factorial iteratively?
Multiply in a loop.
126. How to generate Fibonacci recursively?
Base case 0, 1; else f(n-1)+f(n-2).
127. How to generate Fibonacci iteratively?
Update two variables in a loop.
128. How to find prime factors recursively?
Divide by smallest divisor and recurse.
129. How to check if number is a power of two?
(n & (n-1)) == 0 && n > 0.
130. How to check Armstrong number recursively?
Sum of digits to power of count equals number.
131. How to reverse a number?
Loop extracting digits and build reversed.
132. How to check Strong number recursively?
Sum of factorial of digits equals number.
133. How to check perfect square?
Square of sqrt(n) equals n.
134. What is a Spy number?
Digit sum equals digit product.
135. What is a Happy number?
Sum of squares of digits leads to 1.
136. What is a Duck number?
Contains zero but doesn’t start with zero.
137. What is a Buzz number?
Divisible by 7 or ends with 7.
138. What is an Evil number?
Binary representation has even 1s.
139. What is a Magic number?
Recursive digit sum equals 1.
140. What is a Disarium number?
Sum of digits raised to their position equals number.

Section 13: Arrays & Collections (Q141–Q160)
141. How to sum elements at even indexes?
Loop with step 2 from index 0.
142. How to sum elements at odd indexes?
Loop with step 2 from index 1.
143. How to find pair sum equal to target?
Use a HashSet to check complements.
144. How to find triplet sum equal to target?
Sort and use two pointers.
145. How to find median of array?
Sort and pick middle.
146. How to find mode of array?
Count frequency, return max frequency element.
147. How to find average of array?
Sum / length.
148. How to print palindrome elements from array?
Apply palindrome check on each.
149. How to print prime elements from array?
Apply prime check on each.
150. How to merge sorted arrays without extra space?
Use gap method.
151. How to find kth largest element?
Use PriorityQueue or Quickselect.
152. How to remove duplicates from array?
Use LinkedHashSet.
153. How to find maximum subarray sum?
Use Kadane’s algorithm.
154. How to find minimum subarray sum?
Use modified Kadane’s.
155. How to rotate array right cyclically?
Reverse method.
156. How to rotate array left cyclically?
Reverse method.
157. How to move zeros to end keeping order?
Stable shifting.
158. How to sort elements by frequency?
Use Map + custom comparator.
159. How to find first non-repeating element?
Map count then first count==1.
160. How to find leaders in array?
Traverse from right keeping max so far.

Section 14: File, Date & Miscellaneous (Q161–Q180)
161. How to append to file?
FileWriter(file, true).
162. How to read CSV file?
BufferedReader + split(",").
163. How to write CSV file?
FileWriter.
164. How to search word in text file?
Read line by line, use contains().
165. How to replace word in file?
Read, replaceAll(), write back.
166. How to list all files in folder?
File.listFiles().
167. How to filter only .txt files?
FilenameFilter.
168. How to get current time in milliseconds?
System.currentTimeMillis().
169. How to measure execution time?
Start time – end time.
170. How to get current working directory?
System.getProperty("user.dir").
171. How to create ZIP file?
ZipOutputStream.
172. How to extract ZIP file?
ZipInputStream.
173. How to read PDF in Java?
Apache PDFBox or iText.
174. How to read Excel file?
Apache POI.
175. How to write Excel file?
Apache POI.
176. How to get image file size?
File.length().
177. How to resize image?
BufferedImage.
178. How to change image format?
ImageIO.write().
179. How to check file permissions?
canRead(), canWrite(), canExecute().
180. How to check hidden file?
isHidden().
Section 15: Advanced Problem Solving (Q181–Q200)
181. How to generate all permutations of a string?
Use recursion and swapping.
182. How to generate all combinations?
Use backtracking.
183. How to build a Sudoku solver?
Use backtracking with constraints checking.
184. How to solve N-Queens problem?
Backtracking with column/diagonal checks.
185. How to solve a maze problem?
Use DFS or BFS.
186. How to detect cycles in a graph?
Use DFS with visited and recursion stack tracking.
187. What is Bellman-Ford algorithm?
Finds shortest paths by relaxing edges repeatedly.
188. What is Prim’s algorithm?
Builds minimum spanning tree using a priority queue.
189. What is Kruskal’s algorithm?
Builds MST using sorted edges and disjoint sets.
190. What is topological sort?
Linear ordering of vertices using DFS or Kahn’s algorithm.
191. How to insert into a Binary Search Tree (BST)?
Recursively place nodes based on value.
192. How to delete from a BST?
Handle leaf, one-child, and two-child cases separately.
193. What is Heap Sort?
Sorting using heapify and extracting the root repeatedly.
194. What is Counting Sort?
Sort using frequency count of elements.
195. What is Radix Sort?
Sort digit by digit using counting sort.
196. What is Shell Sort?
Sort using decreasing gap-based insertion sort.
197. What are bitwise AND, OR, XOR operations?
&, |, and ^ perform bit-level logical operations.
198. How to swap numbers without a temp variable using XOR?
a = a ^ b; b = a ^ b; a = a ^ b;
199. How to count set bits in an integer?
Use n & (n-1) repeatedly.
200. How to do fast exponentiation?
Use divide-and-conquer method.

Section 16: Extra Simple Core Java Q&A (Q201–Q220)
201. What is the file extension of Java source code?
.java for source, .class for compiled bytecode.
202. Who invented Java?
James Gosling.
203. When was Java first released?
1995.
204. What is the latest Java LTS version (as of 2025)?
Java 21.
205. What is the default package in Java?
java.lang.
206. What is a package?
A namespace for organizing classes and interfaces.
207. Syntax to import a class?
import packageName.ClassName;
208. What are access modifiers in Java?
public, protected, default, private.
209. Examples of non-access modifiers?
static, final, abstract, synchronized, transient, volatile.
210. Default value of int in Java?
0.
211. Default value of boolean in Java?
false.
212. How to define a static variable?
static type varName;
213. How to call a static method?
ClassName.methodName();
214. What is the parameter of main method?
String[] args.
215. What is System.out.println?
Prints output to console with a newline.
216. Types of comments in Java?
Single-line, multi-line, and documentation comments.
217. Variable naming rules in Java?
Start with letter, $, or _, case-sensitive, no spaces.
218. Is Java case-sensitive?
Yes.
219. Do local variables have default values?
No, they must be initialized before use.
220. What is an instance variable?
Variable defined in a class but outside any method.

Section 17: Keywords, Operators & Basics (Q221–Q250)
221. How many reserved keywords in Java?
Around 50 (varies by version).
222. What does break do?
Exits loop or switch.
223. What does continue do?
Skips current iteration.
224. What does return do?
Exits from a method, optionally returning a value.
225. Arithmetic operators in Java?
+, -, *, /, %.
226. Relational operators?
==, !=, >, <, >=, <=.
227. Logical operators?
&&, ||, !.
228. Assignment operators?
=, +=, -=, *=, /=, %=.
229. Unary operators?
++, --, +, -.
230. Syntax of ternary operator?
condition ? valueIfTrue : valueIfFalse;
231. Types of type casting in Java?
Widening (implicit), narrowing (explicit).
232. What does instanceof do?
Checks object type.
233. Bitwise operators?
&, |, ^, ~, <<, >>, >>>.
234. Shift operators?
<<, >>, >>>.
235. Difference between pre-increment and post-increment?
Pre (++i) increments before use; post (i++) increments after.
236. Why use wrapper classes?
To treat primitives as objects.
237. What is autoboxing?
Automatic primitive → wrapper conversion.
238. What is unboxing?
Automatic wrapper → primitive conversion.
239. What is a default constructor?
No-argument constructor, provided by compiler if not defined.
240. What is a parameterized constructor?
Constructor with parameters.
241. What is overloaded constructor?
Multiple constructors with different parameter lists.
242. What is a static block?
Runs once when class is loaded.
243. What is an initialization block?
Runs when an object is created.
244. How to request garbage collection?
System.gc();
245. What is null in Java?
Reference with no object.
246. Use of this()?
Calls another constructor in the same class.
247. Use of super()?
Calls parent class constructor.
248. What is method signature?
Method name + parameter list.
249. What are varargs?
Variable-length arguments (type... args).
250. What is a marker annotation?
Annotation with no methods.

Section 18: Java Basics & Syntax (Q251–Q270)
251. Three types of comments in Java?
Single-line, multi-line, documentation.
252. Class naming convention?
PascalCase.
253. Method naming convention?
camelCase.
254. How to define a constant?
final type NAME = value;
255. Can Java run without main method?
No (except with special tools or older tricks).
256. Method for single-line output without newline?
System.out.print().
257. Method for output with newline?
System.out.println().
258. How to format output?
System.out.printf() or String.format().
259. Do local variables have default values?
No.
260. What does \n mean?
Newline.
261. What does \t mean?
Tab space.
262. How to define char literal?
Single quotes, e.g., 'A'.
263. Boolean literal values?
true, false.
264. How to define string literal?
Double quotes.
265. Run code without method?
Place in static block.
266. How to write infinite loop?
while(true) or for(;;).
267. What is block scope?
Scope inside {}.
268. Array index start?
0.
269. Get array length?
array.length.
270. Last array index?
length - 1.

Section 19: Java Keywords & Small Concepts (Q281–Q300)
281. Is goto used in Java?
No, it’s reserved but not implemented.
282. Is const used in Java?
No, use final instead.
283. What is native keyword?
Calls non-Java (e.g., C/C++) code.
284. What is strictfp keyword?
Enforces IEEE floating-point standard.
285. What is assert keyword?
For debugging/testing conditions.
286. What is synchronized method?
Method accessed by only one thread at a time.
287. What is volatile variable?
Always read from main memory.
288. What is transient keyword?
Skips variable in serialization.
289. When is default keyword used?
In switch or interface default methods.
290. What is enum short for?
Enumeration.
291. Enum constant naming convention?
Uppercase.
292. Can switch use String?
Yes, since Java 7.
293. Can switch have duplicate case values?
No.
294. What happens without break in switch?
Fall-through.
295. Can continue be used with label?
Yes, in nested loops.
296. Effect of final method parameter?
Cannot reassign inside method.
297. When must super() be called?
First line of constructor.
298. Multiple public classes in a file?
No, only one allowed.
299. Private main method?
Compiles, but JVM won’t call it.
300. What is static import?
Imports static members for direct access.

Section 20: Java Memory & Miscellaneous (Q311–Q350)
311. Heap memory stores?
Objects and instance variables.
312. Stack memory stores?
Local variables, method calls.
313. Main JVM components?
Class loader, memory, execution engine, GC.
314. Class loader types?
Bootstrap, Extension, System.
315. Class loading lazy?
Yes.
316. Is overloading runtime?
No, compile-time.
317. Is overriding compile-time?
No, runtime.
318. Does System.gc() guarantee GC?
No.
319. Does finalize() always run?
Not guaranteed.
320. Change JVM stack size?
-Xss option.
321. Set heap size?
-Xms and -Xmx.
322. When OutOfMemoryError occurs?
Heap is full.
323. When StackOverflowError occurs?
Stack limit exceeded.
324. Where is String pool?
Heap, in a special area.
325. What is interned string?
String stored in pool.
326. Infinite recursion causes?
StackOverflowError.
327. Immutable object?
State cannot change.
328. Mutable object?
State can change.
329. Marker interface?
Interface with no methods.
330. Serializable interface?
Enables object serialization.
331. Externalizable interface?
Custom serialization control.
332. Where is readObject() defined?
ObjectInputStream.
333. Where is writeObject() defined?
ObjectOutputStream.
334. Parent of Object class?
None, it’s the root.
335. Methods in Object class?
toString(), equals(), hashCode(), clone(), wait(), notify(), notifyAll().
336. equals() vs == ?
equals() checks values; == checks references.
337. hashCode() purpose?
Hash-based collection support.
338. Default toString() output?
ClassName@HexHashCode.
339. wait() outside synchronized?
Throws IllegalMonitorStateException.
340. notify() vs notifyAll()?
One thread vs all waiting threads.
341. sleep() vs wait()?
sleep() keeps lock; wait() releases.
342. Methods in Runnable?
run().
343. Methods in Callable?
call() returns value.
344. Thread vs Runnable?
Extend vs implement.
345. Daemon thread?
Background thread.
346. Set daemon thread?
setDaemon(true) before start().
347. join() method?
Wait for another thread to finish.
348. yield() method?
Suggests thread scheduler to pause.
349. Default thread priority?
5.
350. What is TimerTask?
Task scheduled by java.util.Timer.

