Section 1: SQL Basics (Q1–Q20)
1. What is SQL?
Structured Query Language – used to access, manage, and modify data in databases.
2. Difference between SQL and MySQL?
SQL is a language; MySQL is a database management system that uses SQL.
3. What is a database?
An organized collection of data.
4. What is DBMS?
Database Management System – software to create, store, and manage databases.
5. What is RDBMS?
Relational DBMS – stores data in tables with rows and columns.
6. Main types of SQL statements?
DDL, DML, DCL, TCL.
7. What is DDL?
Data Definition Language – defines and alters database structure (CREATE, ALTER, DROP).
8. What is DML?
Data Manipulation Language – modifies data (INSERT, UPDATE, DELETE).
9. What is DCL?
Data Control Language – manages permissions (GRANT, REVOKE).
10. What is TCL?
Transaction Control Language – manages transactions (COMMIT, ROLLBACK, SAVEPOINT).
11. What is a table in SQL?
A structure with rows and columns to store data.
12. What are rows and columns?
Row = record; Column = field.
13. What is a primary key?
A column with unique and non-null values.
14. What is a foreign key?
A column referencing the primary key in another table.
15. What is NULL in SQL?
Represents missing or unknown value (not the same as empty).
16. Purpose of SELECT statement?
Retrieve data from tables.
17. What are aliases in SQL?
Temporary names for columns or tables.
18. Purpose of DISTINCT keyword?
Returns unique rows by removing duplicates.
19. What is ORDER BY clause?
Sorts results in ascending or descending order.
20. What is WHERE clause?
Filters rows based on a condition.

Section 2: Filtering & Operators (Q21–Q40)
21. Difference between AND and OR?
AND – both conditions must be true; OR – at least one must be true.
22. What is BETWEEN?
Filters values within a range.
23. What is IN?
Matches values from a list.
24. What is LIKE?
Matches a pattern.
25. Difference between % and _ wildcards?
% – multiple characters; _ – single character.
26. IS NULL vs IS NOT NULL?
Checks if value is null or not null.
27. Comparison operators in SQL?
=, !=, <>, >, <, >=, <=.
28. Logical operators in SQL?
AND, OR, NOT.
29. Arithmetic operators in SQL?
+, -, *, /.
30. Purpose of NOT keyword?
Negates a condition.
31. What is ALL keyword?
Compares a value to all values in a subquery.
32. What is ANY keyword?
Compares a value to any value in a subquery.
33. What is EXISTS?
Checks if subquery returns any rows.
34. Difference between UNION and UNION ALL?
UNION removes duplicates; UNION ALL keeps duplicates.
35. What is INTERSECT?
Returns common rows from both queries.
36. What is MINUS (or EXCEPT)?
Returns rows from first query not in the second.
37. What is CASE statement?
Implements conditional logic in SQL.
38. What is COALESCE?
Returns the first non-null value.
39. What is NULLIF?
Returns NULL if two expressions are equal.
40. Difference between CAST and CONVERT?
Both change data type; syntax differs by database.

Section 3: Joins (Q41–Q60)
41. What is a join?
Combines related data from multiple tables.
42. What is INNER JOIN?
Returns only matching rows from both tables.
43. What is LEFT JOIN?
All rows from left table, matched rows from right.
44. What is RIGHT JOIN?
All rows from right table, matched rows from left.
45. What is FULL OUTER JOIN?
All rows from both tables, matching where possible.
46. What is CROSS JOIN?
Cartesian product of two tables.
47. What is SELF JOIN?
Joining a table with itself.
48. What is NATURAL JOIN?
Joins on columns with the same names.
49. What is EQUI JOIN?
Join using equality condition.
50. What is NON-EQUI JOIN?
Join using non-equality condition.
51. What is Theta Join?
Join using any comparison operator.
52. What is Hash Join?
Uses hash tables for faster joins.
53. What is Merge Join?
Joins sorted tables by merging.
54. What is Anti Join?
Returns rows in one table with no match in another.
55. What is Semi Join?
Returns rows that match, without duplicates.
56. Join vs Subquery?
Join merges tables; subquery is a nested query.
57. Can we join more than two tables?
Yes, multiple joins are allowed.
58. Can we join without ON clause?
Yes, in CROSS JOIN.
59. Which join returns maximum rows?
CROSS JOIN.
60. Which join returns minimum rows?
INNER JOIN.
Section 4: Aggregate & Scalar Functions (Q61–Q80)
61. What is an aggregate function?
A function that returns a single value from multiple rows (e.g., SUM, AVG).
62. What is a scalar function?
Returns a single value for each row (e.g., UPPER, LOWER).
63. What does COUNT() do?
Counts rows.
64. What does SUM() do?
Adds values in a numeric column.
65. What does AVG() do?
Returns the average of numeric values.
66. What does MIN() do?
Returns the smallest value in a column.
67. What does MAX() do?
Returns the largest value in a column.
68. What does ROUND() do?
Rounds a numeric value to a specified precision.
69. Difference between CEIL() and FLOOR()?
CEIL returns the next integer; FLOOR returns the previous integer.
70. What does ABS() do?
Returns the absolute value.
71. What does POWER() do?
Returns a number raised to a power.
72. What does MOD() do?
Returns the remainder after division.
73. What does UPPER() do?
Converts string to uppercase.
74. What does LOWER() do?
Converts string to lowercase.
75. What does INITCAP() do?
Capitalizes the first letter of each word.
76. What does LTRIM() do?
Removes leading characters from a string.
77. What does RTRIM() do?
Removes trailing characters from a string.
78. What does TRIM() do?
Removes both leading and trailing characters.
79. What does SUBSTR() do?
Extracts part of a string.
80. What does REPLACE() do?
Replaces part of a string with another value.

Section 5: Constraints (Q81–Q100)
81. What is a constraint?
A rule that enforces data integrity.
82. Types of constraints?
PRIMARY KEY, FOREIGN KEY, UNIQUE, NOT NULL, CHECK, DEFAULT.
83. What is PRIMARY KEY constraint?
Unique and not null.
84. What is FOREIGN KEY constraint?
References the primary key of another table.
85. What is UNIQUE constraint?
Ensures all values are different.
86. What is NOT NULL constraint?
Disallows null values.
87. What is CHECK constraint?
Ensures values meet a specific condition.
88. What is DEFAULT constraint?
Assigns a default value if none is given.
89. What is composite primary key?
A primary key with multiple columns.
90. Can a table have multiple primary keys?
No, but it can have a composite key.
91. Can a table have multiple unique constraints?
Yes.
92. Difference between UNIQUE and PRIMARY KEY?
Primary key cannot have nulls; unique can.
93. Can a foreign key be NULL?
Yes, unless NOT NULL is specified.
94. What is ON DELETE CASCADE?
Deletes related child rows when parent is deleted.
95. What is ON UPDATE CASCADE?
Updates child key when parent key changes.
96. Can CHECK have multiple conditions?
Yes, using AND/OR.
97. Can CHECK use subqueries?
Usually not supported.
98. Can constraints be disabled?
Yes, using ALTER TABLE.
99. Can we name constraints?
Yes, when creating or altering tables.
100. Can we drop constraints?
Yes, using ALTER TABLE DROP CONSTRAINT.

Section 6: Indexing (Q101–Q120)
101. What is an index?
Structure to speed up data retrieval.
102. Types of indexes?
Single-column, composite, unique, non-unique, full-text, bitmap.
103. Does primary key create index automatically?
Yes.
104. Does unique constraint create index automatically?
Yes.
105. What is a clustered index?
Stores data in the order of the index.
106. What is a non-clustered index?
Stores separate structure with pointers to data.
107. Can we have multiple clustered indexes?
No.
108. Can we have multiple non-clustered indexes?
Yes.
109. What is a full-text index?
Optimized for searching large text.
110. What is a bitmap index?
Uses bitmaps for low-cardinality data.
111. What is a covering index?
Contains all columns needed by a query.
112. What is a filtered index?
Built on a subset of rows.
113. What is a function-based index?
Built on the result of an expression.
114. Advantages of indexes?
Faster retrieval.
115. Disadvantages of indexes?
Slower writes and extra storage.
116. How to create index?
CREATE INDEX name ON table(col);
117. How to drop index?
DROP INDEX name;
118. When to avoid indexes?
On small or frequently updated tables.
119. Does index use storage?
Yes.
120. How to view indexes on a table?
SHOW INDEXES FROM table; (MySQL).
Section 7: Transactions, ACID, Concurrency (Q121–Q160)
121. What is a transaction?
A group of SQL operations executed as a single logical unit.
122. What does ACID stand for?
Atomicity, Consistency, Isolation, Durability.
123. What is Atomicity?
All operations complete successfully or none at all.
124. What is Consistency?
Database remains valid before and after the transaction.
125. What is Isolation?
Transactions don’t interfere with each other’s operations.
126. What is Durability?
Committed changes persist even after failures.
127. What is COMMIT?
Saves all changes made in a transaction.
128. What is ROLLBACK?
Reverts changes in a transaction.
129. What is SAVEPOINT?
Marks a point in a transaction to roll back to.
130. What is autocommit?
Each statement is automatically committed after execution.
131. What is a dirty read?
Reading uncommitted data from another transaction.
132. What is a non-repeatable read?
Same row read twice gives different results.
133. What is a phantom read?
A repeated query returns new rows.
134. Read Uncommitted level?
Allows dirty reads.
135. Read Committed level?
Only committed data is read.
136. Repeatable Read level?
Prevents non-repeatable reads.
137. Serializable level?
Highest isolation; prevents all anomalies.
138. Trade-off of higher isolation?
Better consistency, less concurrency.
139. What is a lock?
Mechanism to control concurrent access.
140. What is a shared lock?
Allows read, blocks write.
141. What is an exclusive lock?
Blocks both reads and writes from others.
142. What are intention locks?
Indicate future locking plans.
143. Row-level vs table-level locks?
Row-level is finer; table-level is coarser.
144. What is a deadlock?
Two transactions waiting on each other’s locks.
145. How to resolve deadlocks?
Detect and abort one transaction.
146. What is blocking?
Waiting due to a lock, but not a deadlock.
147. Optimistic vs pessimistic concurrency?
Optimistic checks for conflicts at commit; pessimistic locks early.
148. What is MVCC?
Multi-Version Concurrency Control – uses row versions.
149. What is snapshot isolation?
Reads from a consistent snapshot.
150. What is write skew?
Concurrent writes violate constraints under snapshot isolation.
151. What is an idempotent operation?
Can be repeated without changing the result.
152. Why retryable transactions?
To recover from deadlocks or serialization failures.
153. Impact of long transactions?
Hold locks and consume resources longer.
154. When to disable autocommit?
For multi-step transactions.
155. How to handle partial failures?
Use SAVEPOINTS and rollback only the failed part.
156. Why use read-only transactions?
For optimization and safety.
157. Purpose of NOWAIT/SKIP LOCKED?
Avoid waiting on locked rows.
158. What is transactional DDL?
DDL inside a transaction (DB-dependent).
159. What is two-phase commit (2PC)?
Ensures atomic commit across multiple databases.
160. Risks of distributed transactions?
Latency, complexity, and blocking.

Section 8: Views & Materialized Views (Q161–Q180)
161. What is a view?
A stored SQL query acting as a virtual table.
162. Advantages of views?
Simplifies queries, adds security, reusability.
163. What is an updatable view?
Allows inserts/updates to base tables.
164. Can all views be updated?
No; joins/aggregates often prevent updates.
165. What is WITH CHECK OPTION?
Prevents modifications outside view’s filter.
166. What is a materialized view?
Stores query results physically.
167. Difference between view and materialized view?
View is virtual; materialized view stores data.
168. Types of materialized view refresh?
Complete, fast, on-demand, scheduled.
169. Why use materialized views?
Improve performance for complex queries.
170. Trade-offs of materialized views?
Storage and refresh cost.
171. How can views enforce security?
Restrict access to certain columns/rows.
172. What is schema binding?
Prevents underlying schema changes.
173. What is an indexed view?
A view with indexes for performance.
174. How to implement row-level security with views?
Add WHERE clauses filtering by user.
175. Possible view performance issue?
Nested views can be slow.
176. What is a temporary view?
Session-specific logical view.
177. Effect of renaming/dropping a view?
Breaks dependent queries.
178. Are parameterized views supported?
Not in standard SQL; use table functions.
179. How is stale data seen in materialized views?
It’s as fresh as the last refresh.
180. How to refresh MV without blocking reads?
Use concurrent refresh methods.
Section 9: Stored Procedures & User-Defined Functions (Q181–Q210)
181. What is a stored procedure?
A set of SQL statements stored in the database and executed as a unit.
182. What is a user-defined function (UDF)?
A routine that accepts inputs and returns a value, can be used in queries.
183. Procedure vs function difference?
Functions must return a value; procedures may not.
184. What is a deterministic function?
Always returns the same output for the same input.
185. Why are side-effect-free functions important?
They allow better optimization and predictability.
186. Scalar vs table-valued functions?
Scalar returns one value; table-valued returns a table.
187. What are parameter modes?
IN, OUT, INOUT.
188. How to handle exceptions in procedures/functions?
Use TRY...CATCH or equivalent in the DBMS.
189. Why use stored procedures?
Reusability, security, and reduced network traffic.
190. Downside of overusing stored procedures?
Harder to maintain, test, and port between systems.
191. Performance pitfalls of UDFs?
Row-by-row execution can be slow; prefer set-based logic.
192. What is bulk processing?
Performing operations on multiple rows in one go.
193. Dynamic SQL in a procedure?
Allows flexible queries but must be secured against SQL injection.
194. Return codes vs result sets?
Return codes for status; result sets for data.
195. What is privilege separation in procedures?
Grant execute permission to users, not direct table access.
196. Logging inside a procedure?
Insert into an audit table for tracking.
197. What is idempotent upsert?
An insert/update that can run multiple times without side effects.
198. Using sequences in procedures/functions?
For generating unique keys.
199. What are default parameters?
Parameters with default values if not provided.
200. Returning multiple result sets?
Supported in some DBs (e.g., SQL Server, MySQL).
201. How to version procedures?
Use version suffixes and migration scripts.
202. Testing stored procedures?
Use test data and rollback after execution.
203. Security definer vs invoker?
Definer runs with creator’s privileges; invoker uses caller’s.
204. Handling timeouts in long procedures?
Use batching and adjust client/server timeout settings.
205. When to use recursive functions?
For hierarchical or tree structures.
206. Why prefer set-based operations over row-by-row?
Set operations are faster and more efficient.
207. What is instrumentation in procedures?
Collect timing, row counts, and error logs.
208. How to prevent SQL injection in procedures?
Use bind parameters and avoid string concatenation.
209. What are cross-database calls?
Executing procedures in another database.
210. Best practice for deploying procedures/UDFs?
Use version control and tested deployment scripts.

Section 10: Triggers & Scheduled Events (Q211–Q230)
211. What is a trigger?
Code that runs automatically in response to table events.
212. BEFORE vs AFTER trigger?
BEFORE runs before the change; AFTER runs after.
213. Row-level vs statement-level triggers?
Row-level runs once per row; statement-level runs once per statement.
214. What is a mutating table error?
Occurs when reading from the same table in its trigger.
215. What is an audit trigger?
Captures who changed what and when.
216. What is a soft delete trigger?
Marks a row as deleted instead of physically removing it.
217. Cascading triggers risk?
Can cause loops and performance issues.
218. What is an INSTEAD OF trigger?
Allows modifying views.
219. Example of a preventive trigger?
Blocking updates outside business hours.
220. Trigger vs application logic?
Keep simple integrity in triggers; complex logic in applications.
221. What is a scheduler/event?
Runs jobs on a set schedule within the DB.
222. Examples of maintenance jobs?
Refresh stats, refresh materialized views, archive old data.
223. Can DB send email directly?
Some can, but often handled by application services.
224. Trigger performance impact?
Triggers add overhead to DML operations.
225. How to handle errors in triggers?
Raise an error or log it.
226. Security triggers?
Enforce row-level security by filtering users.
227. ID generation in triggers?
Assigns keys before insert using sequences.
228. Time issues in triggers?
Use server time functions, not client time.
229. When to disable triggers?
During bulk loads or migrations.
230. Testing triggers?
Perform controlled DML and verify expected results.

Section 11: Advanced Querying (Q231–Q270)
231. What is a subquery?
A query inside another query.
232. What is a correlated subquery?
Subquery that references columns from the outer query.
233. What is a CTE (WITH)?
A temporary named result set for readability and reuse.
234. Why use recursive CTEs?
For hierarchical or recursive data.
235. What is a window function?
Performs calculations across a set of rows without collapsing them.
236. Purpose of OVER(PARTITION BY ... ORDER BY ...)?
Defines the window for the calculation.
237. What is ROW_NUMBER()?
Assigns a unique sequential number to rows.
238. RANK() vs DENSE_RANK()?
RANK leaves gaps; DENSE_RANK doesn’t.
239. What are LAG and LEAD?
Access previous/next row values.
240. What are FIRST_VALUE and LAST_VALUE?
Return the first or last value in the window.
241. What does NTILE(n) do?
Divides rows into n groups.
242. How to calculate moving average?
AVG with a ROWS frame.
243. How to calculate cumulative sum?
SUM with UNBOUNDED PRECEDING.
244. How to get top-N per group?
Use ROW_NUMBER and filter to 1.
245. What is pivot?
Converts rows into columns.
246. What is unpivot?
Converts columns into rows.
247. EXISTS vs IN difference?
EXISTS checks for existence; IN checks for matching values.
248. ANY vs ALL difference?
ANY matches one; ALL matches all.
249. Where can scalar subqueries be used?
SELECT, WHERE, HAVING clauses.
250. What is a derived table?
Subquery in the FROM clause.
251. How to do an anti-join?
LEFT JOIN with IS NULL or NOT EXISTS.
252. How to do a semi-join?
Use EXISTS.
253. What are set operations?
UNION, UNION ALL, INTERSECT, EXCEPT.
254. UNION vs UNION ALL performance?
UNION removes duplicates, slower.
255. What is gaps-and-islands problem?
Finding continuous sequences and gaps in data.
256. Top record per group without join?
Use window functions.
257. What is conditional aggregation?
Aggregate with CASE inside.
258. How to get percentiles?
Use PERCENTILE_CONT or equivalent.
259. How to do sampling?
TABLESAMPLE or random filtering.
260. How to fill time-series gaps?
Join with a calendar table.
261. What is a sargable predicate?
Allows index usage.
262. Example of non-sargable?
Wrapping column in a function in WHERE.
263. How to expand array/JSON?
Use UNNEST or JSON functions.
264. What is a lateral join?
Join that allows referencing left table in subquery.
265. What is a window frame clause?
Defines the subset of rows for window functions.
266. Why use HAVING?
Filter after GROUP BY.
267. What is ROLLUP/CUBE?
Creates subtotals and grand totals.
268. What are GROUPING SETS?
Define multiple groupings in one query.
269. What is distinct within group aggregate?
COUNT(DISTINCT col) etc.
270. What is QUALIFY clause?
Filters on window function results (DB-specific).

Section 12: Performance & Query Plans (Q271–Q300)
271. What is an execution plan?
Steps DB will take to run a query.
272. Purpose of EXPLAIN/ANALYZE?
See plan and execution stats.
273. Index scan vs table scan?
Index scan reads selected rows; table scan reads all.
274. Seek vs scan?
Seek jumps to data; scan reads sequentially.
275. Join methods?
Nested loop, hash join, merge join.
276. What is cardinality estimate?
Estimated row count in plan.
277. Why are statistics important?
Improve cardinality accuracy.
278. What is parameter sniffing?
Plan optimized for one parameter may not fit others.
279. What is selectivity?
Fraction of rows that match filter.
280. Benefit of covering index?
Satisfies query without reading table.
281. Order of columns in composite index?
Most selective first.
282. When to index expressions?
When filtering by computed values.
283. What is over-indexing?
Too many indexes slow writes.
284. How to optimize OR conditions?
Rewrite or use separate queries with UNION.
285. Index with LIKE '%term'?
Needs special indexes like full-text.
286. Pagination performance tip?
Use seek method instead of OFFSET.
287. What is N+1 query problem?
Repeated queries for related data.
288. When to materialize intermediate results?
For complex queries with reuse.
289. Temp table vs CTE?
Temp table persists for session; CTE is inline.
290. What are optimizer hints?
Directives to influence plan choice.
291. What is a parallel query?
Uses multiple processors.
292. I/O-bound vs CPU-bound?
Based on resource bottleneck.
293. What is a hotspot index?
Many inserts into same page.
294. What is fill factor?
Space left in index pages.
295. Why parameterize queries?
Plan reuse and security.
296. CTE for readability vs performance?
Good for readability; perf varies.
297. When to denormalize?
For read-heavy workloads.
298. Why cache queries?
Reduce repeated execution.
299. What is slow query log?
Captures queries exceeding a time limit.
300. What is workload profiling?
Analyzing query patterns and resource use.

Section 13: DBA Basics – Security, Backup/Restore (Q301–Q330)
301. User vs role?
User = identity; role = permission set.
302. What is least privilege principle?
Grant only necessary permissions.
303. What do GRANT and REVOKE do?
Give or remove permissions.
304. What is row-level security?
Filters rows based on user.
305. What is column masking?
Hides part or all of a sensitive column.
306. Why audit logging?
For compliance and tracking changes.
307. Encryption at rest vs in transit?
At rest = stored data; in transit = data over network.
308. Types of backups?
Full, incremental, differential, logical, physical.
309. What is point-in-time recovery?
Restoring to a specific time.
310. Why verify backups?
To ensure they can be restored.
311. RPO vs RTO?
Recovery point vs recovery time.
312. Hot vs warm vs cold standby?
Hot = live; warm = delayed; cold = offline.
313. Password policy?
Rules for complexity and expiry.
314. Service account best practice?
Least privilege, no interactive logins.
315. Schema vs database?
Schema = namespace; database = logical storage.
316. Why schedule maintenance windows?
To run heavy tasks during low usage.
317. What to monitor in DB?
CPU, memory, I/O, locks, slow queries.
318. How to set alert thresholds?
Based on baselines and SLOs.
319. Why use connection pooling?
Reuse connections to save time.
320. Risk of too many connections?
Resource exhaustion.
321. What is a resource governor?
Controls resource use per workload.
322. Safe schema changes?
Backward-compatible migrations.
323. What is online index rebuild?
Rebuild without blocking queries.
324. What is data retention policy?
Rules for how long data is kept.
325. What is anonymization/tokenization?
Masking sensitive data.
326. What is change data capture (CDC)?
Capturing row changes for replication or ETL.
327. Why use read replicas?
Offload reads from primary.
328. Failover vs switchover?
Failover = unplanned; switchover = planned.
329. What is split-brain?
Two primaries active at once.
330. What is a runbook?
Step-by-step incident procedure.

Section 14: Data Modeling, Normalization, Partitioning, JSON (Q331–Q350)
331. What is normalization?
Organizing data to reduce redundancy.
332. What is 1NF?
Atomic values, no repeating groups.
333. What is 2NF?
1NF + remove partial dependencies.
334. What is 3NF?
2NF + remove transitive dependencies.
335. What is BCNF?
Stronger form of 3NF.
336. When to denormalize?
For performance in read-heavy cases.
337. What is an ER diagram?
Visual representation of entities and relationships.
338. What is cardinality?
Defines relationship type (1:1, 1:M, M:N).
339. Surrogate vs natural key?
Surrogate = artificial; natural = from business data.
340. What is partitioning?
Splitting a table into smaller parts.
341. When to use range partitioning?
For time-series data.
342. When to use hash partitioning?
For even data distribution.
343. When to use list partitioning?
For specific categories.
344. Sharding vs partitioning?
Sharding = across servers; partitioning = within one.
345. Replication vs sharding?
Replication copies data; sharding splits it.
346. Does SQL support JSON?
Yes, in many databases.
347. Why index JSON/XML?
To speed up searches inside documents.
348. Best practice for time zones?
Store in UTC, convert on display.
349. Sequences vs identity columns?
Sequence = independent; identity = tied to a table.
350. Soft delete vs hard delete?
Soft = mark as deleted; hard = remove row.

